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Abstract. The frequency equation for a cable damped at a fraction location,
generally being a transcendental equation, was reformulated into an algebraic
form. Based on the fundamental theorem of algebra and the characteristics of
logarithmic function in the complex domain, the solution structures were revealed
and several examples with given damper positions were presented to study the
variation of the solutions with the damping coefficient. The results show that:
1) All solutions of the frequency equation of the system could be classified into
a finite number of solution branches. 2) The solutions of different orders in the
same solution branch share an identical real part and any two adjacent solutions
share an identical difference. 3) According to different variations in decay rate and
frequency with damping coefficient, all the solution branches could be classified
into four categories, each of which showed different trend of variation.
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1 Introduction

Vibration mitigation of stay cables has attracted much attention in bridge engineering
research (Johnson et al. 2007; Chen et al. 2020; Chen et al. 2022). A common way
to reduce the vibration of cables in engineering practice is to use the external viscous
dampers (Yoneda andMaeda 1989; Takano et al. 1997; Sun et al. 2001; Dyke et al. 2003).
The early researches on control of cable vibration using viscous dampers mainly focused
on the lower modes. However, with the development of long-span cable-stayed bridges
and the length of stay cables becoming longer and longer, the higher order modes may
dominate the vibration of cables (Gao et al. 2018; Chen et al. 2019; Yang et al. 2021;
Kim et al. 2022; Yang et al. 2022), which necessitates researches of both lower and
higher modes vibration of cable-damper system.

In existing studies, the cable-damper system is usually simplified as a taut string
with lumped damping (Tabatabai et al. 2000; Hoang et al. 2008; Chen et al. 2004;
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Pacheco et al. 1993; Krenk et al. 2000; Main et al. 2002 and Zheng et al. 2020). And the
complex eigenvalue problem of the systemwith different damper positions and damping
coefficients is studied to evaluate the vibrational characteristics of the system. Pacheco
(1993) obtained the numerical solutionof the complex eigenvalue problemanddeveloped
the approximate expression of the modal-damping ratios for the first few modes for the
damper positions near the anchorage. Krenk (2000) derived a general transcendental
frequency equation and obtained approximate analytical solutions, resulting in another
approximate expression of the lower modal damping ratios while the damper is near
the end of cables. For the higher modes, Yang (2021) improved the solution method of
Krenk and obtained an approximate analytical solution of the higher modal damping
ratios with the same damper positions. It is worth noting that Main (2002) derived the
same complex frequency equation with Krenk and analyzed the variations of frequencies
and modal-damping ratios of the system vibration of all orders with the damper position
and damping coefficient.

In fact, the frequency equation of the cable-damper system is a transcendental equa-
tion without general analytical solution methods. In the above studies, numerical or
approximate analytical methods had been used to obtain the eigen-solutions of the sys-
tem and remarkable accomplishments had been achieved in dealing with engineering
problems with these results. However, the relationship between the low and high order
eigenvalues of the system is not easily revealed in the above solutions. In order to get
more insight into the dynamic characteristics of the system, it is of great significance to
find a fully analytical solution method of the frequency equation.

Zheng (2021) obtained the algebraic form of the frequency equation and got the
first analytical solution of the system for the special case that the damper is located
at the middle span of the cable. This paper borrowed the idea from Zheng (2021) to
simplify the frequency equation into an algebraic form for the case the damper is located
at any fraction position of the cable. Based on the algebraic frequency equation and its
analytical solution, the structural characteristics and properties of the eigen-solutions are
discussed to provide a new perspective for understanding the dynamic characteristics of
the cable-damper system.

2 Transcendental Form of Frequency Equation

A taut string with a concentrated viscous damper is shown in Fig. 1, where l̄ denotes
length, m̄ denotes mass per unit length, T̄ denotes tension, c̄ denotes the damping coef-
ficient of the damper and x̄d denotes the distance from the damper to the left end of the
string (0 < x̄d < l̄).

T
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Fig. 1. A taut string with a lumped damping
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The equation of motion of the system could be described by the following partial
differential equation

T̄
∂2w̄

(
x̄, t̄

)

∂ x̄2
− m̄

∂2w̄
(
x̄, t̄

)

∂ t̄2
= c̄

∂w̄
(
x̄, t̄

)

∂ t̄
δ̄(x̄ − x̄d) (1)

where x̄ is the coordinatesx, t̄ is time, w̄
(
x̄, t̄

)
is the transverse deflection and δ̄(x̄ − x̄d) is

Dirac Delta Function. In Eq. (1), an overbar represents dimensional physical quantities.
Referring to Zheng (2021), the following transformations are introduced

t̄ = t
√
m̄l̄2/T̄ = t/ω̄ (2)

ω̄ =
√
T̄/m̄/l (3)

x = x̄/l̄ (4)

δ(x − xd) = l̄δ̄(x̄ − x̄d) (5)

c = c̄/
√
m̄T̄ (6)

w̄ = l̄w (7)

Substituting Eq. (2)–(7) into Eq. (1), the equation of motion is transformed into a
fully nondimensionalized form.

−∂2w(x, t)

∂x2
+ ∂2w(x, t)

∂t2
= −∂w(x, t)

∂t
cδ(x − xd) (8)

In Eq. (8), c denotes the dimensionless damping coefficient, xd denotes the
dimensionless damper position, 0 < xd < 1.

Based on Eq. (8), the eigenvalue equation of the nondimensionalized system, also
known as the frequency equation, is derived

sinh(p(1 − xd)) sinh(pxd)

sinh(p)
= −1

c
(9)

Equation (9) is a complex transcendental equation and each solution to Eq. (9),
corresponding to a complex eigenvalue of the system could be written explicitly in
terms of real and imaginary parts as p = σ + jω, where −σ is the decay rate of the
system vibration and ω is the natural frequency.

3 Algebraization of Frequency Equation

Equation (9) could usually be solved by numerical method or approximate method,
since it is a transcendental equation. However, for the special cases that the parameter
xd takes any rational number, xd = m/n (m, n∈N+), it turned out that Eq. (9) could be
transformed into an algebraic equation. As a result, the structure of the eigen-solutions
could be analyzed by using the basic theorem of algebra and other related theories, and
the properties of the eigen-solutions could be explored by means of analytical examples.
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It should be pointed out that due to symmetry of the system about its midpoint, it
is only necessary to discuss the case where the damper is located on the left half of the
string. Therefore, we can assume xd ≤ 1/2. At the same time, let xd be a simplest fraction
xd = m/n.

Substitute the expression xd = m/n into Eq. (9) and expand the hyperbolic function
in terms of exponential functions

(
e
p
n
(n−m) − e− p

n
(n−m)

)(
e
p
nm − e− p

nm
)

2
(
ep − e−p

) = −1

c
(10)

Let y = e2p/n, Eq. (10) can be simplified into an n-th degree polynomial equation
about y

(
1 + 2

c

)
yn − yn−m − ym +

(
1 − 2

c

)
= 0 (11)

Equation (11) could easily be solved by the fundamental theorem of algebra and
then by the relationship y = e2p/n, the eigenvalue p of the system could be written as

p = n

2
ln(y), y �= 1 (12)

Equation (11) could be deemed as the algebraic frequency equation of the system
of the taut string with a lumped damping at a fraction location. And its solution could
be used to give the complex eigenvalue of the system by Eq. (12). It is worth pointing
out that the trivial complex eigenvalue p = 0 corresponding to y = 1 is omitted from the
subsequent discussion.

4 Structure of Eigen-Solutions

4.1 System Eigen Solution Branches

Note that the eigenvalue given by Eq. (12) is written as a logarithmic function, which
has multi-valued characteristics in the complex field. As a result, one root y of Eq. (11)
corresponds to a set of eigen value ps. Based on this relationship, all the eigenvalues
of the system could be classified into several eigen-solution branches, each of which
corresponds to one root of Eq. (11). The number and the structural characteristics of
solution branches will be explored in the following.

According to the basic theorem of algebra, the frequency equation Eq. (11) has n
roots and only n − 1 of them need to be considered after discarding the trivial root
of y = 1. Substituting the n-1 roots of Eq. (11) into Eq. (12), we get n − 1 groups of
complex eigenvalues and each group corresponds to one eigen-solution branch. Based
on the above results, the solutions to Eq. (12) can be written as

p(i) = n

2
ln

(
y(i)

)
,i = 1, 2, · · · n − 1 (13)

where y(i) is the i-th root of Eq. (11) and p(i) is the i-th eigen-solutions branch.
It is noted the number of eigen-solution branches of the system is equal to n − 1 and

merely depends on the damper position.
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4.2 Decay Rates and Frequencies of System Vibrations

According to the relevant formula of logarithmic function, the real and imaginary parts
of the eigen-solutions Eq. (13), corresponding to the decay rates and frequencies of
system vibrations, respectively, could be written as

σ (i) = Re
(
p(i)

)
= n

2
ln|y(i) | (14)

ω(i) = Im
(
p(i)

)
= n

2
arg(y(i)) + nsπ, s = 0,±1,±2, · · · (15)

where arg() denotes argument function.

DecayRates of SystemVibrations. It can be seen fromEq. (14) that for a string system
damped at a fraction location, the real parts of the eigenvalues of different order under
the same solution branch are identical. Therefore, the system motions characterized by
these eigenvalues share identical decay rate and the amplitude of each mode of vibration
will decay according to the same exponential function.

Frequencies of System Vibrations. It can be seen from Eq. (15) that the imaginary
parts of eigenvalues of different order under the same solution branch form an arithmetic
sequence with a common difference. It is noted that this property resembles that of the
undamped string.

Based on the structural characteristics of eigenvalues under the same solution branch
presented above, it could be concluded that as long as one eigen-solution of any solution
branch of the system is obtained, all the other eigen-solutions in the same solution branch
are known.

5 Properties of Eigen-Solutions

It could be seen from Eq. (11) that when the damper position parameter xd = m/n is
given, the eigen-solutions will generally vary with the damping coefficients. In what
follows, analytical eigen-solutions of the system for several given damper positions will
be presented to study the variation of eigenvalues with the damping coefficient.

It is noted that when n < 6, Eq. (11) is a polynomial equation of degree 4 or below,
which has a radical solution and may help to get further insight into the dynamics of
the system. Let xd = 1/2, 1/3, 1/4, 1/5 and 2/5, respectively. These different values of
xd represent different damper-string systems. Substitute xd into Eq. (11) and solve it.
Substituting the roots toEq. (11) intoEq. (12), the closed-formsolution of the eigenvalues
could be obtained. Based on these eigen-solutions, the variation of the decay rates and
frequencies of the system vibrations with the damping coefficients could be studied and
the results were shown in Figs. 2, 3, 4, 5 and 6, respectively.

In addition, referring to Main (2002), the system with damper position xd = 3/7 may
take on different dynamic characteristics as the above systems. So, the system with xd =
3/7 is also considered. Note that for xd = 3/7, no radical solution to Eq. (11) exists and
only numerical solutions could be obtained. The results are shown in Fig. 7. It is worth
pointing out that there is only one system with the damper located at a non-unit fraction
location xd = 2/5, which could be studied analytically by radical solutions to Eq. (11).
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Fig. 2. The taut string with a lumped damping at middle-span. (left) The variation of decay rates
of system vibration with damping coefficients. (right) The variation of frequencies of system
vibration with damping coefficient.
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Fig. 3. The taut string with a lumped damping at one-third-span. (left) The variation of decay
rates of system vibration with damping coefficient. (right) The variation of frequencies of system
vibration with damping coefficient.
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Fig. 4. The taut string with a lumped damping at one-fourth-span. (left) The variation of decay
rates of system vibration with damping coefficient. (right) The variation of frequencies of system
vibration with damping coefficient.
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Fig. 5. The taut string with a lumped damping at one-fifth-span. (left) The variation of decay
rates of system vibration with damping coefficient. (right) The variation of frequencies of system
vibration with damping coefficient.
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Fig. 6. The taut string with a lumped damping at two-fifth-span. (left) The variation of decay
rates of system vibration with damping coefficient. (right) The variation of frequencies of system
vibration with damping coefficient.
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Fig. 7. The taut string with a lumped damping at three-seventh-span. (left) The variation of decay
rates of system vibration with damping coefficient. (right) The variation of frequencies of system
vibration with damping coefficient.
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5.1 Variational Characteristics of Solution Branches with Damping Coefficients

It could be observed from Figs. 2, 3, 4, 5, 6 and 7 that all systems have a special solution
branch, which is marked as solution branch p(1) (−σ (1) and ω(1)). The corresponding
decay rate of this special solution branch monotonically increases from 0 to infinity as
the damping coefficient increases from 0 to 2 and monotonically decreases from infinity
to 0 as the damping coefficient increases from 2 to infinity.When the damping coefficient
is equal to 2, the decay rate tends to infinity and the motions represented by the solution
branch p(1) decay to zero instantaneously. The damping coefficient of 2 is called the
critical damping coefficient by Main 2002. It could also be seen from Figs. 2, 3, 4, 5, 6
and 7 that when the damping coefficient gradually increases from 0 to infinity, the decay
rate of all vibrations of any systemmonotonically increases from 0 to its maximum value
and then monotonically decreases to 0. In the following, in discussing the relationship
between decay rate and damping coefficient, we will mainly focus on the maximum
decay rate of each solution branch and its corresponding damping coefficient.

It could also be seen from Figs. 2, 3, 4, 5, 6 and 7 that the frequencies of the system
vibration corresponding to the special solution branch p(1) are constants within a certain
range of damping coefficient. When c ≥ 2, the constants are snπ. Note that when s is
0, non-oscillatory decay of the system will occur. When the damping coefficient c <

2, the vibration frequencies corresponding to the solution branch p(1) vary differently
for different damper positions: 1) When n is an even number (such as the system of xd
= 1/2), the corresponding frequencies of the solution branch take constant values (s +
1/2) nπ; 2) When n is an odd number and m is an even number (such as the case of
xd = 2/5), the corresponding frequencies of the solution branch vary with the damping
coefficient; 3)When n andmare both odd numbers (such as xd = 1/3 or 3/7), the vibration
frequencies corresponding to branches p(1) vary with damping coefficient when it is less
than a certain value cα ( cα < 2). When cα < c < 2, the frequencies again take constants
(s + 1/2) nπ.

When n is an odd number, there is another special solution branch for the system,
which is denoted as p(1

′) instead of p(2), see Figs. 3 and 5, 6, 7. This solution branch
shows different variational characteristics for different damper positions: 1) When m is
an even number (corresponding to the two-fifth-span system, see Fig. 6), the decay rate
of the system vibrations tends to infinity when the damping coefficient approaches 2.
The frequencies of the system vibrations vary with the damping coefficient when the
damping coefficient c < 2 and are constants (s + 1/2) nπ when the damping coefficient
c ≥ 2, which is different from that of p(1) solution branch; 2) When m is an odd number
(such as the one-third-span system, see Fig. 3), the decay rate of the system vibration
attains a local maximum value when the damping coefficient is cα. The frequencies of
the system vibrations vary with the damping coefficient when c < cα and are constants
(s + 1/2)nπ when c ≥ cα .

It is worth noting that only when n is odd, the system has both special solution
branches p(1) and p(1

′). For the case that n is odd and m is even, the solution branches
p(1) and p(1

′) are conjugate to each other when c < 2, which indicates the corresponding
vibrations of the system shares identical decay rates and frequencies. When c ≥ 2, the
two solution branches are no longer conjugate and the decay rates and frequencies of
the corresponding vibrations are not the same. For the system that n and m are both
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odd numbers, the solution branch p(1) and p(1’) are conjugate with each other only
when c < cα . When cα ≤ c < 2, the decay rates of the vibrations corresponding to the
solution branches p(1) and p(1

′) show different variationswith the increase of cwhile their
frequencies are equal constants, see Fig. 3 for an example. When n ≥ 2, the frequencies
of the vibrations corresponding to the two solution branches are still constant, but their
values are different.

For the systemswith n≥ 4, a new kind of solution branch could be found (such as p(2)

and p(3)of the one-fourth-span system, see Fig. 4). The corresponding decay rates change
continuously with the damping coefficient and attain a local maximum value when the
damping coefficient takes a certain value cβ (cβ �= cα). The corresponding frequencies
also vary continuously with the damping coefficient. It is noted that for any damping
coefficient, all solutions in such a solution branch appear in the form of conjugate pairs.

For systems with m ≥ 3 and n ≥ 7 (such as p(5) and p(6) for three-seventh-span
systems, see Fig. 7), another new type of solution branch could be found. Similar to
the special solution branch p(1),the corresponding decay rate of this kind of solution
branches also tends to infinity when the damping coefficient approaches 2. However,
the corresponding frequencies of this kind of solution branch vary with the damping
coefficient for any value of c and show a jump at the point where the damping coefficients
is 2. Note that all solutions in this kind of solution branch also appear in the form of
conjugate pairs.

5.2 Classification Discussion of Solution Branches

Based on the above discussion on the solution branches, all the solution branches could
be classified into four categories based on different variations of the corresponding
frequencies and decay rates with the damping coefficient. The first kind of solution
branches: the corresponding frequencies vary continuously with the damping coefficient
and the decay rates have a local maximum value (such as p(2) and p(3) of the one-
fourth-span system, see Fig. 4); The second kind of solution branches: the corresponding
frequencies also vary with the damping coefficient but show a jump discontinuity and
the maximum value of the decay rate is infinite (for example, p(5) and p(6) of the three-
seventh point system, see Fig. 7); The third kind of solution branches: the corresponding
frequencies are constant and the corresponding decay rates approaches infinity at the
non-differentiable point (such as p(1) of the middle-span system, see Fig. 2). The fourth
kind of solution branches: the corresponding frequencies change continuously with the
damping coefficient when it is less than a certain value and is constant when it is greater
than the value. There are only two such solution branches and they only appear when
n is odd. When m is an even number (e.g. p(1) and p(1

′) for the two-fifth-span system,
see Fig. 6), the maximum values of the corresponding decay rates of both the solution
branches are infinite. When m is also odd (e.g., p(1) and p(1

′) for the one-third-span
system, see Fig. 3), the decay rate of one branch has a finite maximum value and that of
the other branch has a maximum value of infinity.
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6 Conclusion

In this paper, based on the normalized form of the lumped damping string model, the
transcendental frequency equation of the system was reformulated into an algebraic
equation when the damping was located at a fraction position of the cable. And all the
eigen-solutions of the systemcould be classified into afinite number of solution branches,
each of which corresponds to one root of the equation. Several analytical examples with
given damper positions were presented and the variation of the system eigen-solutions
with the damping coefficient were discussed. The main conclusions were as follows:

(1) The eigen-solutions of the system could be classified into n − 1 solution branches,
where the number n is the denominator of the fraction m/n to represent the damper
position.

(2) The eigen-solutions in the same branch share an identical real part, which indicates
the corresponding vibrations of the system decay identically in time. And any two
adjacent solutions in the same solution branch share an identical difference in their
imaginary parts, indicating the corresponding vibrations have the same frequency
difference.

(3) According to different variations in the corresponding decay rates and frequencies
with the damping coefficient, all the solution branches could be classified into four
categories. It was worth noting that the four kinds of solution branches share a
common feature that as the damping coefficient c increases from zero to infinity,
the corresponding decay rates increases monotonically from zero to their maximum
and then decreases monotonically to zero. The difference between different solution
branches are:

The first kind: The corresponding frequencies vary continuously with the damping
coefficient and the decay rates could attain a local maximum as c takes cβ . The solution
branches of this kind correspond to the conjugate complex roots of the algebraic fre-
quency equation and always appear in the form of conjugate pairs and only appear as n
≥ 3.

The second kind: The corresponding frequencies also vary with the damping coef-
ficient but with a jump at the point c = 2 and the corresponding decay rates tends to
infinity at this point. These solution branches also appear in the form of conjugate pairs
corresponding to the conjugate complex roots of the algebraic equation, but only appear
as m ≥ 3 and n ≥ 7.

The third kind: the corresponding frequencies are constant in two different damping
intervals, one lying in c ≤ 2 and the other lying in c > 2, but the constant values are
different. The corresponding decay rates approach infinity as c takes 2. Only one such
solution branch appear as n is even, corresponding to the real root of the algebraic
equation.

The fourth kind: the corresponding frequencies vary with the damping coefficients
in the range 0 < c ≤ β, corresponding to the conjugate complex roots of the algebraic
frequency equation and are constants in the range c > β, corresponding to the real root
of the algebraic frequency equation. There are totally two such kind of solution branches
and they only appear when n is an odd number.Whenm is even, the corresponding decay
rates of the two solution branches approach infinity at c = β = 2. When m is odd, the
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decay rate of one solution branch attains a finite maximum at c = β = cα (cα < 2) and
the decay rate of the other branch approaches infinity at c = 2.
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