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Figure 1: (a) Millimeter-wave transceiver; (b) Mounting device near to ceiling; (c) Mounting device near to ground; (d) A
snapshot of Dynamic Range-Angle heatmap from ground device.

ABSTRACT
Gait speed is an important indicator of human health. Monitor-
ing patients’ gait speed can help doctors assess the recovery
process, but traditional clinician observation fails to track in
home scenarios. Compared to vision-based and wearable ap-
proaches, radio frequency signals offer an easily deployable
and light free solution protecting user privacy in home sce-
narios. Therefore, we proposed a millimeter-wave (mmWave)
system to accurately extract walking periods from collected
trials and calculate gait speeds. To evaluate the robustness and
reliability of our system and determine the optimal mounting
position, we collected data from 5 volunteers with normal
walking speeds and imitated various abnormal gait patterns
and walking speeds. The results show that the mmWave de-
vice mounted near the ground outperforms across all volun-
teers than the one mounted near the ceiling, achieving an
average estimation error of 0.02 m/s in abnormal gait evalua-
tions.

CCS CONCEPTS
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1 INTRODUCTION
Human gait refers to the pattern of walking involving the
center movement of gravity during locomotion [1]. Since the
gait pattern is often compromised by various musculoskeletal
and neurological conditions or diseases, such as stroke, it can
reflect levels of independence, quality of life and participation
[5]. Gait speed, in particular, is validated as a key indicator of
health, enabling clinicians to easily assess the cognitive states
of patients [3, 4]. A change in walking speed of 0.05 m/s is
clinically considered a meaningful improvement [3], which
helps doctors evaluate the recovery process of patients.

Traditional gait speed measurement relies heavily on clin-
ician observation, requiring patients to walk a specified dis-
tance while timing them with a stopwatch [4]. This method
needs time-consuming medical visits and cannot monitor pa-
tients’ health status at home. Wearable sensors combining
accelerometer, gyroscope, and GPS have been used to mon-
itor walking speed, but these devices mostly make patients,
especially older adults, feel uncomfortable. RGB-D camera
can provide detailed 3D point clouds and RGB images to
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capture human gait, but the privacy concern and lighting re-
quirement significantly limit its application at home [2].

Millimeter-wave signals, with their distinctive features such
as high resolution, light-free operation, low-cost, and no pri-
vacy invasion, have attracted researchers to track and analyze
human activities. Therefore, we propose this gait speed es-
timation system based on mmWave reflections, which can
accurately generate human body location from range-angle
heatmaps (RAMaps), separate walking periods from continu-
ous activities for measurement, and finally calculate the gait
speed. Our system doesn’t require any wearable sensors on
the user’s body and can function well in low-light conditions.
Compared to vision-based works, the privacy-protecting char-
acteristics of our system allow it to be applied in various home
environments, such as bedrooms.

To determine the optimal mounting position for the mmWave
device, we tested two setups: one near the ceiling and one
close to the ground (Fig. 1[a-c]). To evaluate this system, we
collected data from 5 volunteers with normal walking speed
for both setups. Additionally, we imitated the abnormal gait
patterns of patients at different walking speeds to analyze
the performance of our work. The ground-mounted device
estimated gait speed more accurately than the top-mounted
setup across all volunteers. Furthermore, the ground-mounted
device can conveniently access power from wall outlets, facil-
itating the deployment of this system. The average estimation
error of 0.02 m/s in various abnormal gait patterns highlights
the robustness and reliability of our system.

2 SYSTEM DESIGN
To accurately estimate the gait speed, our system is mainly
consist of two components: Generating Body Location and
Separating Walking Periods.

2.1 Generating Body Location
To effectively generate body locations from raw mmWave
reflections, we first produce dynamic RAMaps (Fig. 1[d]) to
extract moving targets from static surrounding objects. The
dynamic RAMaps generation involves 3 steps: Range FFT
transforming the time domain signals into the frequency do-
main, Dopple FFT applied on continuous frames to differenti-
ate the moving subjects from stationary surroundings, and An-
gle FFT calculating the azimuth angle from non-overlapping
virtual antennas. From the visualized dynamic RAMaps, con-
tinuous body movement can be captured by detecting the large
connected regions and converting the range and angle values
into accurate 2D locations in bird’s eye view (BEV). To filter
out noise points in the dynamic RAMaps, we threshold the
moving distances of multiple detected targets between two
continuous frames, accounting for the limited walking speeds.
In non-moving periods, the dynamic RAMaps cannot detect

anything, and the generated body location remains the same
as the last detected one.

2.2 Separating Walking Periods
To correctly identify the walking segments, we first utilize
a sliding window with long time duration to monitor body
location changes. The transitions from small location vibra-
tions to large body movements indicate the start of a walking
period. Then, we slice the long time window into shorter time
windows to find the precise start frame of walking. A similar
method is applied to detect the exact end frames of walking
segments. However, the reflected mmWave signals from dif-
ferent parts of human body cause variations of generated body
locations, since the mmWave device provides very limited
angle information in the vertical plane. The detected targets in
the same position will generate different body locations due
to the lack of height information. These variations of body
locations challenge our system to determine the start and end
frames of walking periods. Therefore, we design a smooth-
ing window to filter out those exceptional location changes.
This smoothing window requires stable large motions over
a specific time duration, which helps denoise the location
variations from mmWave signals and improves the accuracy
of walking segmentation. Eventually, we can calculate the
gait speed from location changes and time duration for each
walking segment.

3 PRELIMINARY RESULTS
Top-mounted mmWave transceivers can avoid ground ob-
stacles to easily track human locations, but body reflections
projected on the heatmap will amplify the detected spots to
reduce accuracy, and focus shifts cause location vibrations,
disrupting walking detection. Therefore, we implemented
ground-mounted setup for accurate body location, provid-
ing easier power access than top-mounted. To evaluate our
gait speed estimation system with two setups, we collected
mmWave reflections from 5 volunteers with normal walking
speeds and simulated abnormal walking patterns and speeds
of patients. For each case, we captured multiple walking seg-
ments, also called trials, to evaluate our system. Fig. 2 and
Fig. 3 display the scatter plot of predicted and ground-truth
gait speeds from ground-mounted and top-mounted devices.
A higher correlation coefficient indicates that the prediction
is closer to the ground truth, with the green line showing
where the predictions exactly match the ground-truth values.
In general, the ground-mounted device, achieving correlation
coefficient of 0.99, outperforms the top-mounted device. Par-
ticularly, when the walking speed is low, the top-mounted
device fails to detect walking segments from human activity
because inaccurate body locations heavily affect the threshold
values used to distinguish walking from standing. To validate
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the robustness of our ground-mounted system in handling
abnormal gait, we simulated various walking patterns of the
patients at different speeds around 0.2 m/s, 0.4 m/s, and 0.6
m/s (see Fig. 4). The low average error of estimated gait
speed demonstrates our system, with ground-mounted device,
is robust and reliable enough to handle abnormal gait. For
example, in the case 6, walking in a straight line with angles
at a speed of around 0.2 m/s, our ground-mounted device
achieves an average error of 0.003 m/s, while top-mounted
device cannot detect any walking segment. Fig. 5 demon-
strates that the top-mounted device fails to correctly segment
walking periods in various abnormal gait cases due to the
vibrations of body locations.
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Figure 2: The scatter plot of the ground-mounted device
across all trials is displayed. The green line indicates where
the predictions exactly match the ground-truth values. The
correlation coefficient (R) is 0.99.
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Figure 3: The scatter plot of top-mounted device across
all trials. The correlation coefficient (R) is 0.92.
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Figure 4: The performance of two setups on abnormal
gait. Cases 1-3 demonstrate the simulated walking at speeds
around 0.2 m/s, 0.4 m/s, and 0.6 m/s, respectively. Cases 4-6
depict walking at speed around 0.2m/s in different patterns:
straight line, spiral path, and line path with different angles.
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Figure 5: This figure shows the number of detected and
missed walking trials for two setups. The shaded bars repre-
sent the number of detected walking trials, while the error
bars display the missed trials compared to the ground truth.

4 CONCLUSION AND FUTURE WORKS
This work presents a gait speed estimation system utilizing
mmWave reflections to generate precise body locations from
dynamic RAMaps and estimate speeds from separated walk-
ing periods. We evaluated our system across 5 volunteers
with normal walking speeds and validated its reliability and
robustness on abnormal gait patterns at various speeds. The
results demonstrate that the ground-mounted device excels
in measuring gait speeds and achieves high accuracy even on
abnormal gait. In the future, we plan to collect data from real
stroke patients and extend our system to accurately predict the
3D feet locations of patients, which enables significant appli-
cations on patients, such as monitoring the recovery process
and correcting exercise posture.
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