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DIFFUSION-BASED CT IMAGE SEGMENTATION FOR INTRACEREBRAL HEMORRHAGE

Lili Wang, Pingping Cai, Zhuangzhuang Gu, Srihari Nelakuditi, Yan Tong

University of South Carolina
Molinaroli College of Engineering and Computing

South Carolina, USA

ABSTRACT

Intracerebral hemorrhage (ICH) is a life-threatening stroke
that requires precise segmentation for effective treatment. To
aid in diagnosing ICH, various deep learning-based methods
have been proposed. However, these methods face challenges
posed by irregular patterns and low-contrast boundaries in
ICH images. In this paper, we introduce a novel conditional
diffusion-based segmentation approach for ICH segmenta-
tion. Our framework leverages ResNet18 and a Transformer
Block to enhance conditional feature extraction, as well as
cross-attention mechanisms to align global and local features
between the conditional and diffusion branches. Experiment
results on the Instance2022 dataset show an improvement
exceeding 10% in the Dice coefficient and IoU score, com-
pared to the baseline diffusion-based model, MedSegDiffv2.
More impressively, more than 20% improvement is achieved
in terms of both the Dice coefficient and IoU score in cross-
dataset evaluations on two benchmarks, i.e., the BHSD and
PhysioNet, demonstrating excellent generalizability to un-
seen data.

Index Terms— Deep learning, Diffusion model, Medical
image segmentation, Intracerebral hemorrhage (ICH)

1. INTRODUCTION

Intracerebral hemorrhage (ICH) is a type of disease that oc-
curs when a blood vessel in the brain bursts. It affects more
than 80,000 individuals annually in the United States, posing
a high risk of mortality and causing significant functional dis-
abilities [1]. Computed tomography (CT) imaging is a widely
used tool for ICH diagnosis, but it still relies on subspecialty-
trained neuroradiologists, which can delay timely treatment,
especially in resource-limited settings [2]. Therefore, vari-
ous segmentation algorithms have been proposed to automate
ICH detection. However, they still face challenges due to CT
variability, noise, artifacts, and hemorrhage heterogeneity [3].

Deep learning techniques have significantly advanced
medical image segmentation by enabling pixel-level identi-
fication of complex patterns in CT images. Methods such
as convolutional neural networks (CNNs) [4] have demon-
strated success in bleeding area localization and boundary

Fig. 1. Training curves comparing our method with Med-
SegDiffv2 in terms of IoU (left) and Dice (right). Our ap-
proach achieves faster convergence and more stable training
dynamics on the Instance2022 [7], reaching higher perfor-
mance with fewer iterations.

delineation. However, manual annotations by radiologists
are often prone to inter-observer variability, leading to train-
ing data uncertainty and inconsistent model performance [5].
To address these challenges, generative adversarial networks
(GANs)[6] have been proposed as a solution for mitigating
data limitations. By synthesizing realistic medical images and
segmentation masks, GANs augment datasets with greater
variability, simulate underrepresented classes, and reduce
the reliance on extensive manual annotations. While these
approaches have shown promise, challenges such as model
collapse, synthetic-to-real gaps, and training instability limit
their clinical utility.

More recently, diffusion-based segmentation frameworks
[8] have emerged as an alternative for medical image segmen-
tation. These methods utilize the input image as a condition
for generating the segmentation mask in the diffusion frame-
work, enabling precise boundary recovery and better align-
ment of model outputs with ground truth, making them par-
ticularly effective for medical image segmentation. However,
for the ICH image segmentation task, as illustrated in Fig.
1, existing diffusion models often suffer from slow conver-
gence. In addition, their generalizability remains limited, as
evidenced by the consistently low performance observed in
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Table 1 when evaluated on unseen datasets.
To address these challenges, we propose a diffusion-based

segmentation framework tailored for ICH. Inspired by Med-
SegDiffv2 [9], we enhance ICH segmentation by introduc-
ing a conditional branch with ResNet18, leveraging residual
connections and pre-trained weights for robust feature ex-
traction. A Transformer Block is further included to capture
long-range dependencies and improves contextual awareness.
To enhance generalization, cross-attention mechanisms is in-
troduced to align global and local features, improving accu-
racy and reducing false positives. These modifications ad-
dress key limitations of diffusion models, leading to better
boundary delineation, faster convergence, and greater gener-
alizability. Experiment results on Instance2022 [7], BHSD
[10], and PhysioNet [11] demonstrate the effectiveness our
method. The main contributions of this paper are summarized
as follows:

• We propose a new diffusion-based framework for ICH
segmentation, integrating a newly-designed conditional
feature extractor and cross-attention mechanisms to im-
prove feature alignment and segmentation accuracy.

• Our method significantly accelerates convergence
and enhances training stability compared to existing
diffusion-based models, reducing computational costs
while maintaining high performance.

• We evaluate our method on multiple datasets to demon-
strate its segmentation accuracy and robust generaliza-
tion capabilities.

2. RELATED WORKS

2.1. CNN-Transformer Hybrid Approaches for ICH Seg-
mentation

Recent advances have seen the rise of hybrid architectures
that integrate CNNs for local feature extraction with Trans-
formers for global context modeling in ICH segmentation.
For instance, TransHarDNet [12] enhances the U-Net ar-
chitecture with Transformer blocks to effectively model
long-range dependencies while maintaining computational
efficiency, thereby improving both segmentation accuracy
and inference speed. Similarly, STHarDNet [13] combines
HarDNet with a Swin-Transformer, achieving superior per-
formance on both CT and MRI datasets. In addition, another
hybrid model [14] leverages CNNs enhanced with attention
mechanisms and Atrous Spatial Pyramid Pooling (ASPP)
to better delineate lesion boundaries. Building on these ad-
vancements, we incorporate a Transformer block into our
diffusion-based framework, aiming to enhance global feature
modeling without incurring significant additional computa-
tional overhead.

2.2. Diffusion-based Medical Image Segmentation

Diffusion models have recently emerged as a promising
approach for medical image segmentation, particularly ex-
celling in generating robust segmentation masks in noisy and
low-contrast imaging scenarios. For example, brainSPADE
[8] utilizes a latent diffusion model within a Variational Au-
toencoder (VAE) pipeline to generate synthetic brain MRI
images and their corresponding segmentation masks, thereby
enriching dataset diversity. Similarly, IISE [15] adapts the
diffusion process for lesion segmentation by iteratively refin-
ing predictions and estimating uncertainty, which improves
segmentation reliability. MedSegDiffv2 [9] further advances
diffusion-based segmentation through innovations such as
dynamic conditional encoding and frequency-based feature
enhancements, demonstrating improved performance across
various imaging modalities. However, despite these suc-
cesses, diffusion models remain underexplored in the context
of ICH segmentation. In this work, we address this gap by in-
tegrating Transformer-based enhancements into our diffusion
framework, aiming to improve accuracy and generalization in
challenging ICH segmentation tasks.

3. METHODS

Given an input CT image I ∈ RH×W , the goal of ICH
segmentation is to accurately identify the hemorrhage re-
gions and produce a corresponding segmentation mask X0 ∈
RH×W . Diffusion-based methods iteratively refine an ini-
tial noisy image XT through multiple denoising steps to
approximate X0. This iterative refinement makes diffusion
models particularly well-suited for capturing complex and
heterogeneous structures often encountered in CT images.

To improve both the stability and generalizability of cur-
rent diffusion-based methods, we propose a novel segmenta-
tion framework comprising two key components. A Condi-
tion Branch that leverages a ResNet18-based feature extrac-
tor and an integrated Transformer Block for enhanced multi-
scale and global feature extraction. A Diffusion Branch that
performs iterative denoising with a diffusion U-Net architec-
ture, augmented by cross-attention mechanisms to effectively
align features from the Condition Branch.

3.1. Overview

As illustrated in Fig. 2 the Condition Branch first extracts
multi-scale hierarchical features using ResNet18, leveraging
residual connections and pre-trained weights to ensure ro-
bust feature extraction, even with limited training samples.
To further enhance contextual understanding, a Transformer
Block is integrated to capture long-range dependencies, thus
improving the global feature representation.

The Diffusion Branch then performs iterative denoising to
reconstruct the segmentation map. To achieve optimal feature
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Fig. 2. The proposed diffusion-based segmentation framework for ICH. The architecture integrates a ResNet18 and a Trans-
former Block for conditional feature extraction, and a diffusion U-Net for iterative refinement, with cross-attention mechanisms
enhancing feature alignment.

alignment between these two branches, we incorporate cross-
attention mechanisms that facilitate the fusion of global and
local information, leading to more precise segmentation.

3.2. Condition Branch

Unlike MedSegDiffv2 [9], which employs a U-Net trained
from scratch, our framework uses a ResNet18-based feature
extractor to improve efficiency and convergence, while lever-
aging pre-trained weights to alleviate the challenges of lim-
ited training data.

The Condition Branch starts with a 3× 3 convolution that
produces 32 low-level feature maps from the input CT image,
followed by an encoder comprising the first three stages of
ResNet18 (omitting its final classification stage). A Trans-
former Block—consisting of a multi-head self-attention layer
and a feed-forward network with layer normalization and
residual connections—is then applied to capture long-range
dependencies. Notably, the pre-trained ResNet18 provides
robust initialization in data-scarce scenarios, and the Trans-
former further enhances global feature modeling. Finally,
up-convolution blocks upscale the features to the resolution
required by the Diffusion Branch. The refined Transformer
features serve as keys and values in the cross-attention mech-
anism, effectively fusing global and local information.

3.3. Diffusion Branch and Cross-Attention Integration

The diffusion process in our framework is composed of a for-
ward and a reverse process.

Forward Process: Starting from the ground truth seg-

mentation X0, noise is progressively added over T steps:

q(Xt|Xt−1) = N (Xt;
√
αtXt−1, (1− αt)I), (1)

where αt controls the noise level at each step.
Reverse Process: In the reverse process, the model de-

noises XT step by step to recover X0, conditioned on the fea-
tures c extracted by the Condition Branch:

pθ(Xt−1|Xt, c) = N (Xt−1;µθ(Xt, c, t),Σθ(Xt, c, t)). (2)

Cross-Attention Integration: To facilitate effective fu-
sion between the Condition Branch and the Diffusion Branch,
we employ cross-attention mechanisms. The attention opera-
tion is defined as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (3)

where Q (queries) are derived from the Diffusion Branch,
and K (keys) and V (values) come from the Transformer-
enhanced features of the Condition Branch. Here, dk denotes
the dimensionality of the key vectors.

We apply the cross-attention mechanism at two critical
stages to integrate global and local features, thereby enhanc-
ing segmentation accuracy:

Bottleneck Stage: The refined features from the Trans-
former Block, serving as keys and values, are aligned with
the downsampled outputs (queries) from the Diffusion Branch
before entering the bottleneck. This integration fuses global
context with local details.

Upsampling Stage: During upsampling, the keys and
values from the Transformer Block are further fused with
the Diffusion Branch’s features, enhancing high-resolution
reconstruction and leading to more precise segmentation.
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3.4. Loss Function

The proposed framework adopts the loss function from Med-
SegDiffv2 [9], combining the noise prediction loss Ln for
training the diffusion model with an anchor loss Lanc to su-
pervise the condition model. The anchor loss is defined as
Lanc = Ldice + βLce, where Ldice and Lce represent the soft
Dice loss and cross-entropy loss, respectively, to enhance seg-
mentation supervision. The total loss function is:

Lt
total = Lt

n + (t ≡ 0 (mod α))Lanc, (4)

with α = 5 controlling the frequency of supervision and
β = 10 ensuring consistency with MedSegDiffv2 in our ex-
periments.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

Datasets: The Instance2022 [7] is a challenge dataset with
annotated 3D CT volumes from 100 patients for ICH seg-
mentation. The dataset is split into training (90%) and test-
ing (10%) subsets at the patient level to prevent data leakage.
Each 3D volume is converted into 2D slices along the axial
plane, resized to 256 × 256, and normalized. The training
subset initially contained 2,687 slices with a significant im-
balance between positive and negative samples. To address
this, we downsampled the negative samples to achieve a 1:1
positive-to-negative ratio, resulting in 1,381 slices (691 posi-
tive and 690 negative) for training. The testing subset remains
unchanged with 299 slices to simulate real-world conditions.
The BHSD dataset [10] contains 192 labeled 3D volumes,
from which 10% of patients were randomly sampled to yield
681 2D slices. Similarly, the PhysioNet dataset [11] com-
prises 82 labeled 3D volumes, with 10% sampling producing
346 2D slices. Both datasets are used solely for testing to
evaluate our method’s generalizability. This 10% sampling
balances computational efficiency with statistical representa-
tiveness, reducing inference time and memory usage.

Evaluation Metrics: Segmentation performance is mea-
sured using the Dice similarity coefficient and Intersection-
over-Union (IoU) [3]. Binary masks are obtained by thresh-
olding predicted probability maps at 0.1, 0.3, 0.5, 0.7, and
0.9. The final results are averaged across these thresholds for
robust evaluation [9].

4.2. Implementation Details

The framework is implemented in PyTorch and trained on
four NVIDIA RTX A6000 GPUs. The AdamW optimizer is
used with an initial learning rate of 1×10−4, weight decay for
regularization, and the exponential moving average for stable
training. The model is trained on the Instance2022 [7] train-
ing subset for 115,000 iterations with a batch size of 32, using
a linearly decaying learning rate.

Inference: The trained model is evaluated on the In-
stance2022 [7] testing subset, as well as the BHSD [10] and
PhysioNet [11] datasets. Inference on both the BHSD [10]
and PhysioNet [11] datasets is performed using the model
trained solely on Instance2022 [7] without additional fine-
tuning, to assess its generalization to unseen data.

To evaluate the performance of our proposed method, we
compare it with both previous and current state-of-the-art
(SOTA) models, covering CNN-based and diffusion-based
approaches. Specifically, we include U-Net [16], a widely
used CNN-based segmentation model; TransU-Net [17], a
hybrid model integrating Transformers with CNNs; nnU-Net
[18], a self-adapting framework considered the SOTA among
CNN-based models; U-KAN [19], a U-Net variant leverag-
ing Kolmogorov-Arnold Networks (KANs) but prone to high
false positives; and MedSegDiffv2 [9], a diffusion-based
framework representing the latest advances in generative
segmentation.

Table 1 presents the segmentation performance on three
benchmark datasets. On Instance2022, our model achieves
90.70% Dice and 88.81% IoU, outperforming MedSegDiffv2
(78.52% Dice, 76.60% IoU), confirming its superiority in
diffusion-based segmentation. Furthermore, it performs com-
parably to the CNN-based SOTA, nnU-Net [18] (90.83%
Dice, 88.98% IoU), while benefiting from the generative
capabilities of the diffusion framework.

In cross-dataset evaluations, our model exhibits stronger
generalization than competing methods. On BHSD [10], it
achieved 75.20% Dice and 73.58% IoU, outperforming all
baselines, including nnU-Net (71.96% Dice, 70.64% IoU)
and MedSegDiffv2 (50.64% Dice, 49.35% IoU). Similarly,
on PhysioNet [11], our model attained 83.67% Dice and
82.39% IoU, substantially exceeding MedSegDiffv2 (60.39%
Dice, 60.10% IoU). Even compared to nnU-Net (88.82%
Dice, 87.46% IoU), our approach demonstrates competitive
performance with enhanced robustness across datasets. These
results confirm our model’s state-of-the-art segmentation ac-
curacy and superior generalization across both in-domain and
out-of-distribution scenarios.

Fig. 3 illustrates representative segmentation results on
the three benchmark datasets. Columns display original CT
images, ground truth masks, predictions from our method and
the SOTA methods in comparison. Note improvements in
boundary accuracy and reduced false positives.

4.3. Ablation Study

Effectiveness of Architecture Design. We begin with the
original MedSegDiffv2 [9] framework, which consists of a
diffusion U-Net and a conditional U-Net. Our modifications
enhance the conditional branch, as quantified in Table 2.
Integrating cross-attention significantly improves Dice from
78.52% to 85.66%, demonstrating better feature alignment.
Replacing the conditional U-Net with a ResNet18-based
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Table 1. Comparison of ICH Segmentation Performance (Dice and IoU are reported as percentages %).
U-Net [16] TransU-Net [17] nnU-Net [18] U-KAN [19] MedSegDiffv2 [9] Ours

Dataset IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑
Instance2022 [7] 76.92 79.01 79.73 81.82 88.98 90.83 69.79 71.99 76.60 78.52 88.81 90.70

BHSD∗ [10] 56.54 58.01 59.10 60.67 70.64 71.96 43.35 45.37 54.83 55.58 73.58 75.20

PhysioNet∗ [11] 58.85 60.21 58.75 59.74 87.46 88.82 50.46 52.15 60.10 60.39 82.39 83.67

∗ Inference on the BHSD [10] and PhysioNet [11] datasets is performed using the model trained exclusively on Instance2022 [7], without
additional fine-tuning, to evaluate the generalization capability on unseen datasets.

Fig. 3. Segmentation results on (A) Instance2022 [7], (B) BHSD [10] and (C) PhysioNet [11]. Improvements in boundary
accuracy and reduced false positives are highlighted in red boxes.

Table 2. Ablation Study on Instance2022 [7] Dataset.
Model Variant Dice (%) IoU (%) Best Iteration
Baseline (MedSegDiffv2 [9]) 78.52 76.60 100K
+ Cross-Attention 85.66 83.84 55K
+ Reduce Layer 88.45 86.21 60K
+ ResNet18 Features 88.15 86.94 90K
+ Transformer Block (Full Model) 90.70 88.81 85K

extractor further boosts Dice to 88.15% by leveraging pre-
trained weights and residual connections. Finally, incorporat-
ing a Transformer Block enhances long-range dependencies,
achieving 90.70% Dice, confirming the effectiveness of our
full model.

Stable Convergence and Efficiency. A key advantage
of our method is its faster and more stable convergence. As
shown in Fig. 1, our model reaches near-optimal performance
by 35K iterations (82.59% Dice, 81.32% IoU), whereas Med-
SegDiffv2 [9] fluctuates significantly and stabilizes only after
55K iterations. By 85K iterations, our full model surpasses
the baseline’s final performance (78.52% Dice, 76.60% IoU
at 100K), highlighting its efficiency and robustness.

5. CONCLUSION

In this study, we present a novel diffusion-based segmentation
framework for ICH detection. By integrating a ResNet18-
based feature extractor, a Transformer block for enhanced
conditional features, and cross-attention modules, our ap-
proach improves both training stability and segmentation
accuracy. Extensive experiments on the Instance2022 [7]
dataset, along with cross-dataset evaluations on BHSD [10]
and PhysioNet [11], demonstrate significant improvements
over the baseline MedSegDiffv2 [9] on unseen data.

Strengths and Limitations. Our method benefits from
a streamlined architecture that enables efficient training and
high accuracy, reducing false positives and enhancing re-
call—a crucial factor in clinical settings. However, process-
ing solely on 2D slices limits the capture of 3D spatial con-
text, which is important for segmenting complex structures.
Future work will focus on integrating 3D spatial information
and optimizing for high-resolution inputs, thereby balancing
simplicity with comprehensive spatial awareness.
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